

INTRODUCTION

- Earth co-orbital asteroids - Asteroids with an average heliocentric distance of i AU.
- They present a special challenge to Earth-based surveys.
- This leads to a much lower observational completeness for these types of objects.
- Co-orbital asteroids are generally thought to have more stable orbits.

CO-ORBITAL CONFIGURATION

- In astronomy, a co-orbital configuration is a configuration of two or more astronomical objects (such as asteroids, moons, or planets) orbiting at the same, or very similar, distance from their primary, i.e. they are in a i:I mean-motion resonance. (or I:-I if orbiting in opposite directions).

CO-ORBITAL CONFIGURATION

- Trojans - objects orbit 60° ahead of (L4) or behind (L5) a more massive object
- Horseshoe orbits - Objects librating around 180° from the primary. Their orbits encompass both equilateral Lagrangian points, i.e. L_{4} and L 5
- Quasi-satellite - co-orbital objects that librate around 0° from the primary.
- Exchange orbits

PHOTOMETRIC OBSERVATIONS - DENSE DATA

- Photometric observations of selected Earth co-orbital asteroids were carried out from the Bulgarian National Astronomical Observatory - Rozhen, using the Two-channel Focal Reducer Rozhen or "FoReRo2" instrument attached to the $2-\mathrm{m}$ RCC telescope

Number	Designation	yyyy mm dd	P		BPAB	Grp	
(418849)	2008 WM64	2017 I2 25	36.9	96	19	APO	
(138175)	2000 EEIO4	2018 II O9	66.0	100	8	O	
	-	2019 OI OI	19.3	Io8	14	APO	
	- \\| -	2 O 2 O OI O2	17.9	IO4	14	APO	
	2017 SLi6	20200922	30.0	I4	6	ATE	
	2016 CAis8	20200217 \& I8	20.3	158	-7	ATE	

PHOTOMETRIC OBSERVATIONS - SPARSE DATA

- In addition, we are considering available sparse data on the asteroids taken from the AstDys-2 database, choosing to use only those measurements with an reported accuracy of o.or magnitude or higher

Number	Designation	yyyy mm dd	Filter	Obs. Code ${ }^{a}$
(418849)	2008 WM64	20190107	c	T08 ${ }^{\text {b }}$
		20190109	c	T05 ${ }^{\text {c }}$
		$\overline{2018} \overline{12} \overline{19}$	-	T $0 \overline{8}$
		20181221	-	T05
		20181224	-	T08
		20181228	-	T05
		20200102	-	T08
		20201220	-	T08
		20201222	-	T05
		20201229	-	T08
		20210103	-	T08
(138175)	2000 EE104	20190109	c	T05
		20191227	c	T05
		2020 12/11	c	T08
		2018 $\overline{1} \overline{12}$ 2 $\overline{8}$	-	T05
		20191208	-	T08
		20200102	\bigcirc	T08
		20201209	-	T05
		$2 \overline{2} \overline{0} \overline{10} \overline{10} \overline{9}$	$\overline{\mathrm{G}}$	G96 ${ }^{\text {d }}$
		20201112	G	$703{ }^{\text {e }}$
		20201124	G	703
		20201129	G	G96
		20201219	G	G96
		20201220	G	703
		20201226	G	703
		20210103	G	G96
		20210105	G	703
	2017 SL16	20200923	G	152^{f}
	2016 CA138	20190215	-	T08
		2020 $\overline{0} 02 \overline{16}$	g	${ }^{-} \overline{4} 11^{\bar{g}}$
		$\overline{2020} \overline{0} 2 \overline{16}$	R	${ }^{-1} \overline{1} \overline{1}$

https://newton.spacedys.com/astdys/

ORBITAL DISTRIBUTION THE OBSERVATIONS

4188492008 WM64
Phase Angle Distribution: Minus: pre-opp Plus: post-opp

PAB Longitude Distribution

1381752000 EE104
hase Angle Distribution: Minus: pre-opp Plus: post-opp

Phase Angle Distribution: Minus: pre-opp Plus: post-opp
op Plus. post-opp

PAB Longitude Distribution

2017 SL16
Phase Angle Distribution: Minus: pre-opp Plus: post-opp

PAB Longitude Distribution

ROTATIONAL PERIOD DETERMIINATION

- Standard Fourier analysis or investigating the χ^{2} of the fitted observational data by a Fourier function with different orders

ROTATIONAL PERIOD DETERMINATION

- Standard Fourier analysis or investigating the χ^{2}-of the fitted observational data by a Fourier function with different orders
- We used a light curve inversion method to determine a simple 3 D shape model of the object that reproduces the modelled light curve and then we compare this light curve to the observational data to obtain the best period solution.

ROTATIONAL PERIOD DETERMINATION

- For our purposes, we used the software provided by the Database of Asteroid Models from Inversion Techniques (DAMIT) which was developed by Mikko Kaasalainen in Fortran and converted to C by Josef Durech.
- To ensure that the global minimum of χ_{2} in the period search is not missed, we scan through a fairly wide interval of possible periods.

ROTATIONAL PERIOD DETERMINATION

- According to Kaasalainen, the smallest separation ΔP of the local minima in the trial period P spectrum of the χ_{2} of the light curve fit is roughly given by

$$
\frac{\Delta P}{P} \approx \frac{1}{2} \frac{P}{T}
$$

where $T=\max \left(\left|t-t_{0}\right|\right)$

ROTATIONAL PERIOD DETERMINATION

- Kaasalainen also explain that the period uncertainty is a hundredth part of the ΔP for the smallest local χ_{2} minimum if it is clearly lower than the others.
- But if the neighbouring minima are not clearly higher than the best one, the accuracy cannot be considered better than ΔP since the local error estimate cannot be applied globally.

SPIN AXIS ORIENTATION

- In order to determine a rotational pole solution for the asteroids, we ran the DAMIT convexinv routine with different initial poles randomly distributed over the unit sphere and with 15 deg steps in both ecliptic longitude (λ) and latitude (β) to produce 312 initial pole orientations which we use to contract the $\chi 2$ maps.

2017 SL16 (H=25.8)

2016 CAll38 (H=23.3)

(418849) 2008 WM64 ($\mathbb{H}=20.6$)

(138175) 2000 EE1O4 ($\mathrm{H}=20.4$)

COMPARISON TO NEAS

Size vs spin rate of co-orbital asteroids in our sample (red points) compared to NEAs entries in the Asteroid Lightcurve Data Base (LCDB Bundle v4.0) as of December 202r, including confirmed binary and tumbling asteroids (blue and green points resp.). The horizontal line corresponds to the critical spin rate $\omega_{\text {crit }}(\rho)$ for $\rho=2000 \mathrm{~kg} . \mathrm{m}^{-3}$. Overall, co ${ }^{-}$ orbital asteroids in the extended sample appear to have rotation rates similar to NEAs of similar size. Several objects in our sample, including 2008 WM64, cluster near the critical rotation frequency.

NUMERICAL SIMMULATIONS

- To investigate the orbit evolution of the asteroids, we used the HYBRID symplectic state propagation scheme available in the MERCURY package
- Each asteroid was cloned 20 times
- Two simulation batches were run for the four groups of asteroid clones plus the nominal orbits, one for 104 yr and the other for $10^{6} \mathrm{yr}$, backwards and forwards from the starting epoch. The integration step size in both cases was 4 days, the output step was io yr for the io4 yr runs and io ${ }^{3}$ yr for the ${ }^{6}{ }^{6} \mathrm{yr}$ runs.

(138175) 2000 EE104 ($\mathbb{H}=20.4$)

This asteroid has the most unstable orbit of those investigated in this work. This is probably due to its moderate eccentricity and low inclination, allowing frequent and relatively slow encounters with Venus as well as the Earth. None of the clones remains within the Earth's co-orbital region (|a-I aul <o.orau) for more than a few hundred years from the start of the simulations.

Relative semimajor axis $\left(a-a_{\text {Earth }}\right) / a_{\text {Earth }}$, eccentricity e and inclination I for the nominal orbit and 20 clones of each asteroid over IO4 yr (left) and $\mathrm{IO}^{6} \mathrm{yr}$ (right) from $t=0$.

(418849) 2008 WM64 ($\mathbb{H}=20.6$)

 future evolution of the orbit is less certain, with the clone semimajor axes beginning to disperse after a few times io4 yr.

Relative semimajor axis $\left(a-a_{\text {Earth }}\right) / a_{\text {Earth }}$, eccentricity e and inclination I for the nominal orbit and 20 clones of each asteroid over IO4 yr (left) and $\mathrm{IO}^{6} \mathrm{yr}$ (right) from $t=0$.

2016 CAll38 ($\mathbb{H}=23.3$)

This asteroid is currently in an Earth horseshoe orbit, qualifying therefore as the I3th Earth horseshoe. In our I Myr runs, we find that confinement of the asteroid's orbit within the Earth's co-orbital region persists for several times Io4 yr in the past and in the future.

Asteroid 2016 CA138
Asteroid 2016 CA138

Relative semimajor axis $\left(a-a_{\text {Earth }}\right) / a_{\text {Earth }}$, eccentricity e and inclination I for the nominal orbit and 20 clones of each asteroid over 104 yr (left) and $\mathrm{IO}^{6} \mathrm{yr}$ (right) from $t=0$.

2017 SL16 ($\mathbb{H}=25.8$)

The orbital evolution of this asteroid was recently investigated by Kaplan and Cengiz (2020). Those authors showed that SLi6 is currently in an QS-HS asymmetric horseshoe configuration, having transitioned into this state from a passing orbit \sim IOO yr ago. Our simulations of the asteroid's orbital evolution up to 104 yr from the present are in very good agreement with Kaplan and Cengiz.

Relative semimajor axis $\left(a-a_{\text {Earth }}\right) / a_{\text {Earth }}$, eccentricity e and inclination I for the nominal orbit and 20 clones of each asteroid over IO4 yr (left) and $10^{6} \mathrm{yr}$ (right) from $t=0$.

OVERALL DYNAMICAL PROPERTIES AND RELATION TO ROTATIONAL STATE

- Our results show that the co-orbital resonance is not affecting the orbit stability, but the orbit itself is responsible for that and mainly its eccentricity (e) and inclination (I). Orbits with low e and high I are the most stable because firstly high-incline orbit avoids frequent close encounters with planets and secondly orbits with high e may approach Venus as well as the Earth.
- We cannot make a definitive conclusion if the orbit stability and rotational state of the asteroids are related, so we need further investigations and observations to increase our sample in order to obtain more statistically significantresults.

THANKS FOR YOUR ATTENTION!

THANKS FOR YOUR ATTENTION!

BUT $\mathbb{K E E P} \mathbb{I N}$ MIND

YARIKOVSIKY

- A question to be asked here is whether including the size-dependent Yarkovsky drag force in our dynamical model might change the outcome in a significant way.
- Fenucci and Novaković (2020) investigated this question for the Earth quasisatellite (469219) Kamo’oalewa, an object comparable in both size and orbit to the smallest object in our sample, 2017 SLi6. Though Yarkovsky does change the orbital evolution of Kamo'oalewa over millions of yr and its residence time as an Earth co-orbital, actual differences from the gravity-only case were quite small and the overall effect on the evolution of the orbit was not significant. For this reason, and to minimise the computational overhead of our runs, we decided not to include the Yarkovsky effect in our simulations.

3D SHAPE MODELS

